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Abstract

Due to the rapid development of cities and the intensification of human activities, anthropogenic 
heat emissions play an important role in the impact of urban thermal environment, which  
is an important factor in causing the urban heat island effect. Analyzing the spatiotemporal distribution 
characteristics of anthropogenic heat is of great significance for achieving sustainable urban 
development. The anthropogenic heat flux is divided into four categories of heat flux emissions based 
on energy type: industry, transportation, building, and metabolism, and anthropogenic heat flux data 
are calculated for each province in China from 2000 to 2020. The fitted equations for nighttime lighting 
data and anthropogenic heat fluxes were then constructed through a Geographically and Temporally 
Weighted Regression (GTWR) model. The spatial distribution of anthropogenic heat fluxes at 500 m 
resolution were simulated for 2000-2020 in China. The results show that from a spatial perspective,  
the anthropogenic heat flux in the eastern coastal area is the highest, and the anthropogenic heat flux 
shows a downward trend from the eastern region to the central and western regions. The high growth 
type and high level of anthropogenic heat flux are mainly distributed in the eastern region, while the low 
growth type and low level of anthropogenic heat flux are mainly distributed in the western region. Among 
the eight major urban agglomerations, Shanghai-Nanjing-Hangzhou and the Pearl River Delta have the 
most significant growth in anthropogenic heat flux, with the highest proportion of high-level heat flux.  
In terms of time, the anthropogenic heat flux in China increased from 0.924 W/m2 in 2000 to  
1.783 W/m2 in 2020, with an annual growth rate of 4.56%. The anthropogenic heat flux emissions are 
showing an increasing trend.

Keywords: nighttime lighting, anthropogenic heat flux, China, region, urban agglomerations
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Introduction
Anthropogenic heat is the waste heat emitted 

directly into the atmosphere from people’s production 
and life [1], from industrial production, heating 
systems, residential cooking, transportation, and human 
metabolism. Anthropogenic heat flux refers to the 
total flux of anthropogenic heat emissions generated 
per unit time and area [2]. It plays an important role 
in measuring the impact of human activities on the 
urban thermal environment. Many studies have shown 
that anthropogenic heat has a significant impact on 
urban climate [3, 4]. Some studies have shown that 
anthropogenic heat flux can exacerbate air pollution 
[5], and even increase the frequency of extreme heat 
wave weather, increasing the heat-related health 
risks of urban residents [6]. It has also been noted 
that anthropogenic heat has a positive effect on 
raising urban temperatures and promoting vegetation 
growth in winter in some cold climate regions [7].  
It also affects the formation and distribution of ozone 
[8, 9]. Therefore, quantitative research on anthropogenic 
heat flux is of great significance for understanding 
urban climate change, adjusting China’s urban energy 
consumption structure, and reducing the occurrence of 
extreme weather events in cities.

Currently, there are more studies on the estimation 
of anthropogenic heat emissions, and anthropogenic 
heat flux estimation methods can be divided into three 
categories: the energy consumption inventory method, 
the building model simulation method, and the surface 
energy balance equation method [10-13]. Currently, 
the energy inventory method is commonly used for 
the calculation of anthropogenic heat, which is divided 
into top-down and bottom-up [14-16]. Nighttime light 
remote sensing data can detect the light brightness 
information of the surface, which can be used to study 
population [17], GDP [18], economy [19], city size [20], 
carbon emission [21], energy [22], and pollutants [23, 
24]. In this paper, an exploratory attempt is made to 
apply DMSP/OLS nighttime lighting data to the study 
of anthropogenic heat flux distribution in China. Many 
studies have shown that there is a significant correlation 
between nighttime lights and anthropogenic heat 
emissions. Some scholars have calculated anthropogenic 
heat flux data from nighttime lighting data in Beijing-
Tianjin-Hebei [25], Hong Kong [26], and Xiamen 
[27]. Due to the fact that general linear models do 
not consider spatiotemporal non-stationary problems  
(the relationship between variables and results varies 
with time and space), their results cannot fully  
reflect the true characteristics of spatiotemporal data 
[28]. The Geographically and Temporally Weighted 
Regression (GTWR) model effectively solves this 
problem [29] and has been widely used by scholars, with 
good results [30-32]. This article also innovatively uses 
this method to study anthropogenic heat flux.

Due to the differences in the level of economic and 
social development between cities and the geographical 

environment they are located in, there are large 
differences in anthropogenic heat fluxes and their spatial 
distribution in different regions and cities of different 
sizes. Current studies still cannot accurately estimate 
the anthropogenic heat fluxes in different regions 
or describe the spatial and temporal variations of 
anthropogenic heat fluxes, and thus cannot fully reveal 
the spatial variability of anthropogenic heat emissions, 
hindering the integration of anthropogenic heat fluxes 
with other socioeconomic and natural elements, as 
well as comprehensive analysis. Therefore, fine and 
reasonable anthropogenic heat emission raster data 
are important for the numerical simulation study of 
urban climate and environment. In this study, the top-
down energy inventory method is used to estimate the 
anthropogenic heat fluxes in each province of China 
from 2000 to 2020, and a new nighttime lighting 
dataset is constructed for each province by using remote 
sensing images. A spatialized model of anthropogenic 
heat fluxes is established based on the high correlation 
between nighttime lighting data and anthropogenic heat 
fluxes. This will provide important basic data support 
for urban climate and environmental research, which  
is of great significance.

Materials and Methods

Study Area

Considering the availability and continuity of data, 
the study period of this paper is 2000-2020, and the 
study area includes all regions of China excluding Tibet, 
Hong Kong, Macau, and Taiwan, with a total of 30 
provinces.

Four regions, namely the Eastern Region, the 
Central Region, the Western Region, and the Northeast 
Region, were selected for this study according to their 
geographical divisions. and eight typical city clusters, 
namely Beijing-Tianjin-Tangshan, Shanghai-Nanjing-
Hangzhou, Pearl River Delta, Middle south of Liaoning, 
Wuhan Metropolitan Area, Central Plains Urban 
Agglomeration, Shandong Peninsula, and Sichuan-
Chongqing, were selected for this study according to 
their city cluster scales.

Data Sources

(1) Heat flux data sources
The energy consumption of each sector of heat flux 

was obtained from the website of the National Bureau 
of Statistics and the China Statistical Yearbook. (https://
data.stats.gov.cn/easyquery.htm?cn=C01).
(2) Night light images

Nighttime light remote sensing data have been 
widely used in research work such as urbanization 
process monitoring, but the incomparability of the two 
commonly used nighttime light remote sensing data 
(DMSP-OLS and NPP-VIIRS) limits the available 
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time series length of nighttime light data. Chen et 
al. proposed an Auto-encoder (AE) based correction 
scheme for cross-sensor (DMSP-OLS and NPP-VIIRS) 
nighttime lighting data [33]. This new nighttime lighting 
data set solves the problem that the DMSP-OLS and 
NPP-VIIRS sets of nighttime lighting data cannot be 
used simultaneously, extends the length of time that 
the data are available, and provides a new source of 
data for related fields such as urban studies. (https://doi.
org/10.7910/DVN/YGIVCD).

Research Methods

Firstly, anthropogenic heat flux data are calculated 
for each province, then a spatio-temporal geographically 
weighted regression model is used to construct  
a regression equation between provincial anthropogenic 
heat flux and nighttime lighting data, and finally the 
accuracy of the model is verified using the anthropogenic 
heat flux statistics of prefecture-level cities. The spatial 
and temporal variations of anthropogenic heat fluxes  
in China are analyzed based on the simulation results.

Calculation of Total Anthropogenic  
Heat Emissions

Based on the method of Xie et al. [34], assuming 
that all heat generated from human activities is emitted 
into the atmosphere in the form of sensible heat, the 
anthropogenic heat flux is divided into two parts: energy 
consumption and human metabolism:

  (1)

In the formula: AHF is the total anthropogenic heat 
flux; AHFe is the anthropogenic heat flux released due 

to energy consumption; AHFm is the anthropogenic heat 
flux released due to human metabolism.

This study further subdivides the anthropogenic heat 
flux released by energy consumption into:

  (2)

In the formula: AHFi, AHFt, AHFb are the 
anthropogenic heat emissions from industry, 
transportation, and construction, respectively. Among 
them, transportation includes transportation, storage, 
and postal industry, construction includes construction, 
wholesale, retail and accommodation, catering, and 
living, and industry includes agriculture, forestry, animal 
husbandry, fishery, water conservancy, electricity, gas 
and water production and supply, extractive industry, 
manufacturing, and other industries. Anthropogenic 
heat flux is the anthropogenic heat release per unit time 
and unit area.

The anthropogenic heat flux from the energy 
consumption of the above three sectors is calculated by 
the following formula (3):

  (3)

In the formula: C is the calorific value of standard 
coal, taken as 292.7×108KJ/kg; S is the area of  
the region; T is the corresponding time; Mk is the energy 
consumption of a sector in a region at a certain time, and 
the subscript k indicates different sectors (i for industry, 
b for building, t for transportation; the same below).

The anthropogenic heat emissions generated by 
human metabolism are:

  (4)

Fig. 1. Study Area.
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In the formula: P1 and P2 denote the heat generated 
per unit time due to human metabolism in the active 
and sleep conditions, respectively; t1 and t2 are the active 
time and sleep time, respectively; and N is the total 
population of the region. According to related studies 
[35], the average power P1 of a person in the average 
condition is 175 W during activity, and the activity time 
t1 is about 16 h. The power P2 during sleep is 75 W, and 
the average sleep time t2 is 8 h.

Spatiotemporal Dynamic Evaluation 
of Anthropogenic Heat Flux

We calculated the anthropogenic heat flux in China 
from 2000 to 2020 and analyzed the spatial pattern of 
anthropogenic heat flux. The equation is described as 
follows:

  (5)

Among them, Pi represents the anthropogenic heat 
flux of the year 2000 to 2020, and t represents the 
total number of years, set as 21. Describe the temporal 
variation of anthropogenic heat flux from 2000 to 2020 
using Equation (6).

  (6)

Pi
tem is the time variation of pixel i anthropogenic 

heat flux from 2000-2020.

Simulation Method

Due to the differences in economy, society, and 
natural environment of each city, spatial heterogeneity 
should be considered to identify the correlation between 
night light and artificial heat flux. Geographically 
weighted regression (GWR) models are most widely 
used in current spatial heterogeneity studies, but GWR 
uses cross-sectional data and is prone to anomalous data 

fluctuations and parameter excesses. The geographically 
and temporally weighted regression (GTWR) model 
introduces a temporal dimension, which can solve the 
above problems and make the estimation results more 
effective. This paper uses GTWR, an ArcGIS plug-in 
designed by HUANG et al. [29], to measure and simulate 
the results, and the results show that R2 is greater than 
0.9 and the simulation results meet the requirements.

Accuracy validation is an essential step in model 
simulation. According to JI et al. [36], error correction 
was performed on the fitting equation obtained from 
GTWR simulation. Based on Arcgis10.8 software,  
using a grid calculator to substitute night light grid  
data into the fitting equation for the corresponding year, 
the estimated anthropogenic heat flux values for the 
years 2010 and 2019 nationwide can be obtained. By 
dividing the estimated iron stock by city, the simulated 
iron stock estimates for each city in 2010 and 2019 can 
be obtained.

The goodness-of-fit R2 measures the correlation 
between the simulated and statistical values, and 
the simulated and statistical values are analyzed  
for correlation based on the simulated values obtained 
from the nighttime light data simulation, as shown  
in Fig. 2.

The data R2 of the 118 cities mentioned above reached 
0.9249, and the simulation results all achieved good 
results, which proved that the national anthropogenic 
heat flux regression model constructed in this study has 
good mathematical and statistical results.

Results and Discussion

The spatial and temporal dynamics of anthropogenic 
heat fluxes in China from 2000 to 2020 are shown in 
Fig. 3. The anthropogenic heat flux data show obvious 
regional distribution characteristics. The eastern coastal 
region has the highest anthropogenic heat flux due to 
its high population density and high level of economic 
development. The central and northeastern regions lag 

Fig. 2. Result verification.
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temporal changes of anthropogenic heat fluxes from 
2000 to 2020 were classified into four categories: no-
obvious-growth, low-growth, moderate-growth and 
high-growth. The natural breakpoint method was again 
used to quantify the spatial variation of anthropogenic 
heat fluxes from 2000 to 2020. The anthropogenic heat 
fluxes were classified into 5 classes: low, relatively-low, 
medium, relatively-high and high. Fig. 4a) shows the 
temporal variation characteristics of anthropogenic heat 
flux from 2000-2020, and Fig. 4b). shows the spatial 
variation characteristics of anthropogenic heat flux from 
2000-2020.

The four levels and five types of anthropogenic  
heat flux in China from 2000 to 2020 are shown  
in Fig. 4. and Fig. 5. In terms of the temporal change 
pattern, the high-growth and moderate-growth types 
account for 0.003% and 0.15% of the total area of the 
study area, mainly concentrated in coastal areas, 
some inland metropolitan areas, and developed cities, 
including Beijing, Shanghai, Guangzhou, Shenzhen, 
and provincial capitals. The no-obvious-growth type 
and low-growth type account for 98.63% and 1.21% 
of the total area in China, respectively, and are mainly 
distributed in the inland and western regions of China.

In addition, it can be seen from Fig. 5. that the 
spatial variation pattern of anthropogenic heat flux in 
China is similar to the temporal variation pattern of 
anthropogenic heat flux. Low grade and relatively-low 
grade anthropogenic heat fluxes are mainly distributed 

behind the eastern coastal regions in terms of economic 
development and rank second in anthropogenic heat 
flux. The western region has a small population density 
and economic development far behind the eastern 
region, and its anthropogenic heat flux is also the lowest.  
As a whole, anthropogenic heat fluxes show a decreasing 
trend from the eastern region to the central and western 
regions. There are several obvious areas of high and 
low values of anthropogenic heat flux. The high value 
areas of anthropogenic heat flux are mainly located 
in the economically developed large cities such as 
Beijing, Tianjin, Hebei, Yangtze River Delta, Shanghai, 
Suzhou, Hangzhou, and Nanjing. The low value areas of 
anthropogenic heat flux are mainly located in the vast 
areas of southern Xinjiang-Tibet-western Qinghai and 
northeastern Xinjiang-northwestern Gansu-northern 
Inner Mongolia. Over the past 21 years, the spatial and 
temporal variations of anthropogenic heat fluxes in 
China have expanded significantly.

Compared with other statistical data classification 
methods, the natural breakpoint method has the smallest 
variance within categories and the largest difference 
between categories. The classification results were not 
influenced by human factors and there were obvious 
breaks between different categories. Therefore, this 
study chose the natural breakpoint method to study 
the variation of anthropogenic heat fluxes in different 
regions of China. The natural breakpoint method was 
used to rank the anthropogenic heat fluxes, and the 

Fig. 3. Distribution of anthropogenic heat flux in China based on night light.



Huang J., et al.6

Au
th

or
 C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y

Au
th

or
 C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y

Fig. 4. The temporal a) and spatial b) changes of anthropogenic heat flux in China from 2000 to 2020.
Note: Negative growth is considered as no-obvious-growth.

Fig. 5. Area percentage of each type a) and area percentage of each grade b).

Fig. 6. Area percentage of each type a) and area percentage of each grade b) of the four regions.

a)   b)

a) 
 
 

b)
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in the inland and western regions, accounting for 98.32% 
and 1.18% of the national area, respectively. High grade 
and relatively-high grade fluxes are mainly distributed 
in coastal areas, accounting for 0.03% and 0.13% of the 
total area of China, respectively.

The spatial and temporal dynamics of anthropogenic 
heat fluxes at the regional scale and the percentage of area  
of each type and class in the four regions is shown in 
(Fig. 6a). In terms of temporal variation, the high-
growth type is mainly distributed in the eastern and 
western regions, accounting for 42.6% and 38.1% of 
the total area of the high-growth type, respectively. 
The moderate-growth type is also mainly distributed  
in the eastern and western regions, accounting for  
45.9% and 29.39% of the total area of this type.  
The low-growth type is mainly distributed in the eastern 
region, accounting for 52.83% of the total area of this 
type. The no-obvious-growth type is mainly distributed 
in the western region, accounting for 71.86% of the total 
area of this type. All four types of anthropogenic heat 
fluxes were lower in the northeast and central regions.

In terms of spatial variation (Fig. 6b), high grade, 
relatively-high grade, medium grade, and relatively-
low grade were mainly distributed in the eastern region, 
accounting for 54.54%, 65.27%, 60.36% and 51.22% of 
the total area of this grade, respectively. The low grades 
are mainly distributed in the western region, accounting 
for 72.05% of the total area of this grade. The proportion 
of each grade in the central and northeastern regions is 
relatively low, and the distribution is more even.

In conclusion, the spatial and temporal variations 
of anthropogenic heat fluxes are mainly concentrated 
in the eastern and western regions, and the spatial and 
temporal variations of anthropogenic heat fluxes in the 
central and northeastern regions are not obvious.

From 2000 to 2020, the anthropogenic heat flux in 
China increased from 0.924 W/m2 in 2000 to 1.783 W/
m2 in 2020, with an annual growth rate of 4.56%. All 
anthropogenic heat flux emissions show an increasing 
trend. The top three anthropogenic heat fluxes in 2020 
are: Shanghai, Tianjin and Beijing. Shanghai grows 
from 11.74 W/m2 in 2000 to 16.86 W/m2 in 2020, Tianjin 
grows from 3.14 W/m2 in 2000 to 6.48 W/m2 in 2020,  
and Beijing grows from 2.76 W/m2 in 2000 to 4.03 W/m2. 
The next three places in the ranking of anthropogenic 
heat flux in 2020 are: Qinghai Province, Xinjiang, 
and Gansu Province. Qinghai Province increased 
from 0.01 W/m2 in 2000 to 0.055 W/m2, Xinjiang 
increased from 0.027 W/m2 in 2000 to 0.108 W/m2  
in 2020, and Gansu Province increased from 0.095 W/m2 

in 2000 to 0.186 W/m2. In 2020, there were seven 
provinces with anthropogenic heat fluxes higher than 
the national average. The average annual growth rate 
of anthropogenic heat flux is lower than the national 
average in six provinces, and the bottom three are 
Heilongjiang (1.6%), Jilin (2.12%) and Shanghai (2.18%), 
while the top three average annual growth rates are 
Ningxia (30.13%), Qinghai (21.38%) and Inner Mongolia 
(19.37%).

From 2000 to 2020, although the anthropogenic 
heat flux of these eight urban agglomerations continues 
to grow, the growth rate and increase vary greatly.  
In terms of area share, 97.64% of the urban 
agglomerations in Middle south of Liaoning, 95.11% of 
the urban agglomerations in Sichuan-Chongqing and 
96.08% of the urban agglomerations in Central Plains 
are no-obvious-growth type. 22.36% of the area of 
Shanghai-Nanjing-Hangzhou and 14.05% of the area of 
Pearl River Delta are low-growth type. 3.88% of the area 
of Shanghai-Nanjing-Hangzhou and 0.85% of the area 
of Pearl River Delta are moderate-growth type. 0.03% 
of the area of Shanghai-Nanjing-Hangzhou and 0.02% 
of the area of Pearl River Delta are high-growth type. 
Among the eight major urban agglomerations, Shanghai-
Nanjing-Hangzhou has the lowest percentage of low-
growth type and Shanghai-Nanjing-Hangzhou has the 
highest percentage of high-growth type. In summary, 
Shanghai-Nanjing-Hangzhou and the Pearl River Delta 
have the most significant changes in anthropogenic heat 
fluxes.

97.06% of the area of the Sichuan-Chongqing  
urban agglomeration is at low grade of anthropogenic 
heat flux. 17.68% of the area of Shanghai-Nanjing-
Hangzhou is at relatively-low grade of anthropogenic 
heat flux. 7.67% of the Pearl River Delta area  
is classified as a medium grade of anthropogenic 
heat flux. 3.38% of the Pearl River Delta area is of 
relatively-high grade of anthropogenic heat flux. 
0.4% of the Pearl River Delta area is high grade of 
anthropogenic heat flux. The proportion of low grades 
of anthropogenic heat flux in the Sichuan-Chongqing 
urban agglomeration is the highest. The proportion 
of low grades of anthropogenic heat flux in Shanghai-
Nanjing-Hangzhou is the lowest, and the Pearl River 
Delta has the second lowest proportion of low grades of 
anthropogenic heat flux. In summary, the high grades 
of anthropogenic heat flux are mainly distributed  
in the Shanghai-Nanjing-Hangzhou and Pearl River 
Delta urban agglomerations.

Based on the above analysis, it is not difficult to 
find that the anthropogenic heat flux in China has 
undergone significant changes over the past 20 years. 
The eastern coastal areas have a high population 
density, a high level of economic development, and the 
highest anthropogenic heat flux. The western region is 
sparsely populated, economically underdeveloped, and 
has the lowest anthropogenic heat flux. Due to economic 
development reasons, the average annual growth rate 
of anthropogenic heat flux in Heilongjiang and Jilin 
provinces in Northeast China ranks lower. Due to the 
saturation of economic development and population 
density in Shanghai, the average annual growth rate 
of anthropogenic heat flux is relatively low. Qinghai, 
Ningxia, and Inner Mongolia have experienced rapid 
development in recent years, resulting in higher annual 
growth rates of anthropogenic heat flux.

It can be seen that there is a certain correlation 
between economy, population density, and 
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anthropogenic heat emissions. The high value areas 
of anthropogenic heat flux are mainly concentrated 
in economically developed urban areas, especially in 
the Shanghai Nanjing Hangzhou and Pearl River Delta 
urban agglomerations, as well as first tier cities such 
as Beijing, Shanghai, and Guangzhou. In addition, 
some cities or industrial areas with well-developed 
heavy industry and manufacturing industries may 
have smaller spatial areas and higher anthropogenic 

heat flux values, resulting in local anthropogenic heat 
flux even higher than that of certain large city centers.  
This article establishes a model between nighttime 
lighting and anthropogenic heat flux, and quickly and 
accurately obtains anthropogenic heat flux in prefecture 
level cities, which can provide reference for future 
related research.

Table 1. Changes in growth of artificial heat flux by province (W/m2).

2000 2005 2010 2015 2020 Average annual growth rate

Anhui 0.463 0.613 0.952 1.218 1.039 6.24%

Beijing 2.759 3.410 4.284 4.237 4.029 2.30%

Fujian 0.285 0.524 0.879 1.106 1.116 14.56%

Gansu 0.095 0.138 0.183 0.222 0.186 4.80%

Guangdong 0.682 1.088 1.602 1.800 1.851 8.57%

Guangxi 0.128 0.209 0.340 0.439 0.493 14.22%

Guizhou 0.269 0.427 0.550 0.677 0.566 5.52%

Hainan 0.149 0.260 0.754 1.038 0.638 16.41%

Hebei 0.670 1.211 1.725 1.897 1.750 8.07%

Henan 0.586 1.087 1.550 1.640 1.354 6.55%

Heilongjiang 0.179 0.229 0.305 0.323 0.237 1.60%

Hubei 0.407 0.568 0.840 0.869 0.858 5.55%

Hunan 0.237 0.467 0.609 0.679 0.806 11.98%

Jilin 0.264 0.409 0.550 0.556 0.375 2.12%

Jiangsu 1.047 1.962 2.843 3.575 2.952 9.10%

Jiangxi 0.202 0.320 0.463 0.594 0.586 9.52%

Liaoning 1.014 1.419 1.912 1.997 1.501 2.40%

Inner Mongolia 0.044 0.103 0.201 0.263 0.215 19.37%

Ningxia 0.174 0.465 0.816 1.303 1.220 30.13%

Qinghai 0.010 0.018 0.031 0.042 0.055 21.38%

Shandong 0.776 1.860 2.889 3.648 2.560 11.48%

Shanxi 0.763 1.348 1.643 1.972 1.098 2.19%

Shaanxi 0.194 0.380 0.707 0.969 0.640 11.46%

Shanghai 11.741 16.394 19.805 20.526 16.869 2.18%

Sichuan 0.137 0.213 0.334 0.363 0.338 7.29%

Tianjin 3.135 4.464 6.726 7.490 6.475 5.33%

Xinjiang 0.027 0.041 0.071 0.129 0.108 15.02%

Yunnan 0.091 0.190 0.262 0.245 0.324 12.81%

Zhejiang 0.766 1.383 2.014 2.184 2.347 10.32%

Chongqing 0.422 0.508 0.852 0.953 0.917 5.86%

Countrywide 0.924 1.390 1.890 2.098 1.783 4.65%
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Conclusion

This article estimates the spatiotemporal distribution 
characteristics of anthropogenic heat flux in China 
using nighttime lighting data, and obtains the following 
conclusions:

From a spatial perspective, the anthropogenic heat 
fluxes show a decreasing trend from the eastern region to 
the central and western regions. The high-growth type of 
anthropogenic heat flux and high grade of anthropogenic 
heat flux are mainly distributed in the eastern region, 
and the low-growth type of anthropogenic heat flux 
and low grade of anthropogenic heat flux are mainly 
distributed in the western region. Among the eight major 
urban agglomerations, Shanghai-Nanjing-Hangzhou and 
the Pearl River Delta have the most obvious growth of 
anthropogenic heat flux and the highest percentage of 
high grade heat fluxes, while Middle south of Liaoning 
has the highest percentage of no-obvious-growth of 
anthropogenic heat fluxes, and Sichuan-Chongqing has 
the highest percentage of low grade anthropogenic heat 
fluxes.

From a time perspective, China’s anthropogenic 
heat flux increases from 0.924 W/m2 in 2000 to  
1.783 W/m2 in 2020, with an annual growth rate of 
4.56%. The bottom three in the average annual growth 
rate of anthropogenic heat flux are Heilongjiang (1.6%), 
Jilin (2.12%), and Shanghai (2.18%), and the top three 
in the average annual growth rate are Ningxia (30.13%), 
Qinghai (21.38%), and Inner Mongolia (19.37%).
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